3.157 \(\int \frac{(a+a \cos (c+d x))^2}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=44 \[ \frac{4 a^2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

[Out]

(4*a^2*EllipticF[(c + d*x)/2, 2])/d + (2*a^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0804822, antiderivative size = 44, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {2757, 2636, 2639, 2641} \[ \frac{4 a^2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^2/Cos[c + d*x]^(3/2),x]

[Out]

(4*a^2*EllipticF[(c + d*x)/2, 2])/d + (2*a^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^2}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=\int \left (\frac{a^2}{\cos ^{\frac{3}{2}}(c+d x)}+\frac{2 a^2}{\sqrt{\cos (c+d x)}}+a^2 \sqrt{\cos (c+d x)}\right ) \, dx\\ &=a^2 \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx+a^2 \int \sqrt{\cos (c+d x)} \, dx+\left (2 a^2\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a^2 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{4 a^2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)}}-a^2 \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{4 a^2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.16049, size = 39, normalized size = 0.89 \[ \frac{2 a^2 \left (2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\frac{\sin (c+d x)}{\sqrt{\cos (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^2/Cos[c + d*x]^(3/2),x]

[Out]

(2*a^2*(2*EllipticF[(c + d*x)/2, 2] + Sin[c + d*x]/Sqrt[Cos[c + d*x]]))/d

________________________________________________________________________________________

Maple [A]  time = 2.259, size = 104, normalized size = 2.4 \begin{align*} -4\,{\frac{{a}^{2} \left ( \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) - \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) }{\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^2/cos(d*x+c)^(3/2),x)

[Out]

-4*a^2*((2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-si
n(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}{\cos \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2/cos(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)